Examensarbete inom Autonom skogsplantering, 30 hp

Är du i slutet av din utbildning inom datateknik, IT, inbyggda system, mekatronik, teknisk fysik eller liknande och letar efter examensarbete till hösten? Leta inte längre!

BIT ADDICT är ett ingenjörs- och konsultbolag med huvudkontor i Göteborg. Vi på BIT ADDICT älskar teknik och att utvecklas som problemlösare. Just nu söker vi dig som skall skriva ditt exjobb och har ett gediget intresse för mjukvaruutveckling, signalanalys, bildbehandling, och/eller matematik.

Uppgiftsbeskrivning

I projektet BraSatt, som drivs av Södra Skogsägarna, utvecklas ett fordon för att autonomt plantera gran- och tallplantor som en del i framtidens hållbara skogsbruk. BIT ADDICT ansvarar för fordonets styrsystem för autonom navigation och perception.

I dagsläget sker plantering oftast i två steg: maskinell markberedning följt av manuell plantering. Den maskinella markberedningen ökar plantornas chans till överlevnad, men är energikrävande och åsamkar skogsmarken skada. Den manuella planteringsprocessen är skonsam, men förlitar sig på planterarens kompetens och tillgång till arbetskraft.

I BraSatt vävs de två stegen samman till ett: en relativt liten skogsmaskin navigerar autonomt runt på ett kalhygge för att markbereda och plantera i ett kombinerat steg. De potentiella vinsterna för miljö och ekonomi är stora, men kräver teknisk innovation på många fronter för att realiseras.

BIT ADDICT har följande tekniska utmaningar, vilka var och en lämpar sig väl för ett examensarbete:

  1. Kamerafusion för top-down-perspektiv och människodetektion
    I moderna bilar finns funktionalitet för att se bilen från ovan, vilket är användbart vid t.ex. parkering. I BraSatt hade en sådan kameralösning kunnat användas för att detektera människor i maskinens omgivning och vidta säkerhetsåtgärder om en människa kommer för nära maskinen. Då skogsmaskinen som används är midjestyrd krävs en nyskapande lösning för att slå samman (fusionera) bildströmmar från ett flertal HDR-kameror. I den sammanslagna bildströmmen kan sedan människor detekteras.
    Relevanta (men icke nödvändiga) kunskaper: Bildbehandling, projektioner.
  2. Val av rörelseprimitiv genom optimering och simulering i 3D
    När skogsmaskinen ska välja väg använder den sig av en uppsättning garanterat farbara kommandosekvenser (s.k. rörelseprimitiver), vilka den pusslar ihop steg för steg. För att välja nästa rörelseprimitiv krävs simulering och optimering i 3D.
    Relevanta (men icke nödvändiga) kunskaper: 3D-simulering, optimering, 3D-grafik.
  3. Hinderklassificering med Lidar
    För att se sin omgivning använder skogsmaskinen bl.a. Lidar, vars punktmoln filtreras för att skapa en representation av omvärlden. På ett kalhygge finns både solida och icke solida hinder, t.ex. stenblock resp. hallonsnår. Då Lidarns laserstrålar kan genomstråla buskar men inte stenar bör det vara möjligt att särskilja solida hinder från icke solida genom att bearbeta Lidarns punktmoln på rätt sätt.
    Relevanta (men icke nödvändiga) förkunskaper: Punktmolnshantering, 3D-grafik.
Publik information om projektet BraSatt:
Vilka är BIT ADDICT?

BIT ADDICT är ett ingenjörs- och konsultbolag med fokus på att möjliggöra innovation åt kunder som är ledande inom sina respektive branscher. Vårt huvudkontor ligger i Göteborg. 

Vi erbjuder anpassade utvecklingsprojekt och konsulter inom följande specialistområden:

  • Beräkningsmjukvara
  • Sensorik & Styrsystem
  • AI & Maskininlärning

Vår specialitet är att snabbt och säkert ta oss fram i outforskad teknisk terräng. Kunderna vänder sig till oss på grund av vår förmåga att konsekvent och effektivt skapa innovativa tekniklösningar oavsett bransch, tillämpning och teknikområde.

Kvalifikationer

Vi söker dig som studerar till civilingenjör inom datateknik, IT, inbyggda system, mekatronik, teknisk fysik eller liknande. 

Relevanta förkunskaper inkluderar:

  • God programmeringskunskap inom C#, C/C++, Python, eller liknande.
  • Bekväm i Linux-miljö och med Git.
  • Kan arbeta med hårdvara, sensorer, mikrokontrollers (t.ex. Arduino), etc.
  • Intresse för fältexperiment.
Formalia
  • Omfattning: Fulltakt, 30 Hp
  • Antal personer: 1-2 
  • Start: September 2022 eller enligt överenskommelse. 
  • Arvode: Ja
Ansökningsprocess

Intresserad? Skicka in en ansökan redan idag. Intervjuer sker löpande. Du kan ansöka till oss antingen individuellt eller i par. Söker ni i par vill vi gärna ha endast en ansökan med all information. Ansökan sker genom att skicka CV, personligt brev och betyg till veronica.lilja@bitaddict.se 

Kontaktpersoner
Veronica Lilja 
Marknad- & rekryteringsansvarig 
veronica.lilja@bitaddict.se
072 703 75 37